John writes:

Dear TWIM Team,

First of all, thanks for the supremely informative and entertaining podcast. As a biologist who stumbled into my passion for microbiology almost by accident (as a student, I began my research as a herpetologist and was converted while working with the cutaneous microbial assemblages of woodland salamanders), your podcast serves as a primer for many topics that would otherwise require hours of comparatively boring research.

One trend that I hear often repeated is that every microbiology student can’t hope to be a PI in an academic lab, which is very true. I currently work in the R&D department of a small biocatalyst company, and wonder if more attention shouldn’t be paid to careers for microbiologists in the private sector. While R&D doesn’t afford one the same sort of research freedom that academia can boast (I have had to leave numerous interesting but commercially irrelevant questions relegated to the margins of my notebook), it does give you the opportunity to research a variety of interesting aspects of applied microbiology.

There are a few research conferences coming up this year, namely the Society for Industrial Microbiology and Biotechnology (SIMB) annual meeting ( and their more specific Recent Advances in Microbial Control (RAMC) symposium ( Perhaps the list of topics might provide the basis for a TWIM exploring some of the applications of microbiology in agronomy, animal husbandry, bioremediation, wastewater treatment, and other areas. Academic and clinical microbiology seem to get all the attention, and perhaps deservedly so, but there are other options out there for a microbiologist open to branching out.

Thanks again for the fantastic podcast, keep up the great work.

Best Regards,


Ross writes:

Hey TWiMers. I very much enjoyed your discussion of the content of pro-biotics a couple weeks ago. It was interesting to me as previous research I have seen indicated many of those probiotics had little effect on the microbiome, or even had very few live bacteria reaching the gut. Certainly the consensus seems to be they are not very helpful as a health product. But the fact many of those products contain what they claim for the most part was enlightening. This latest research out of Copenhagen may be of interest to you, it seems to further cement the idea that these products are essentially worthless as health supplements. I wonder how this compares to the TWiMers assessment of the current literature?

P.S I applied to be a communication ambassador this year for the Australian Society of Microbiology and am very excited to have been successful. I would love TWiM listeners to follow me @rossbalch and the society @aussocmic and keep up with my adventures in my PhD in respiratory virology as well as sharing and talking about the latest in microbial science throughout the year.

Regards, Ross Balch

BAppSc(MedSc), BAppSc(Microbiol), BBiomedSc(Hons)

School of Biomedical Sciences

Queensland Institute of Technology

Centre for Children’s Health Research (CCHR)

Institute of Health and Biomedical Innovation (IHBI)

Hunter writes:


I came across this article today and had to share it. I wasn’t sure which show to send it to, as the microbe described is related to Giardia and Trichomonas, but I figured TWiM was still more appropriate than TWiP.

Surprise! This eukaryote completely lacks mitochondria:

The article mentions that they’re using sulfur with a system acquired from bacteria to replace the mitochondria, and that the researches want to try to find when the mitochondria were lost. However, I didn’t see anything mentioning evidence that mitochondria were ever there.

Is there some evidence that the microbes used to have mitochondria but lost them, or is it just assumed that they must have had them at some point and lost them?

It seems to me that it would be possible that some microbes could have evolved similar traits to other eukaryotes without having taken up mitochondria.

I also was thinking about the possibility that two organisms could evolve to have similar looking genomes completely independently of each other simply because similar pressures in different places could cause similar genetic patterns to emerge. The result being two organisms with one or more major differences that appear far more closely related than they really are.

With ongoing increases in information that we can gather about organisms, it seems like our current system for categorizing life is becoming less and less able to accurately represent the way different organisms are connected. When I was in school (not too long ago) we were taught to remember the hierarchy of life using: Kings Play Cards On Fat Green Stools, but this system only goes down to the species level, which seems to leave out at least one level of categorization out.

If the finding that this eukaryote doesn’t have mitochondria, which seems like a pretty major difference to others, I would expect to see a new tier added between the currently existing top level eukaryote category and all the current sub-categories that splits the mitochondria and non-mitochondria having eukaryotes, with the currently existing eukaryotes mainly existing under the new mitochondria having category.

With current technology, it seems like it would be more efficient to focus on cataloging organisms and their traits and thinking of them as a relational database where you look for things based on one or more traits with less focus on trying to specifically build a family tree like hierarchy that can be more difficult to adjust to fit new information. For example, with a trait based model, a new finding like this would simply become a new attribute on any appropriate organisms. This, in turn, would cause said organisms to be listed if you were querying all organisms that were both eukaryotic AND lacking in mitochondria without needing to change the categories, or make changes to any other organisms.

With that kind of data, it seems like constructing a hierarchy could be done programmatically, at regular intervals (annually, for example) and with all the needed changes to make sure all life on the tree is at an appropriate level (and that there are enough levels).

Anyway, I don’t know if most of this sounds like the rambling of someone that clearly doesn’t have a background in biology, but I figured I’d share some of the thoughts I had after reading the article.

Hope all is well back East. It’s currently 24C and partly cloudy here in Irvine, CA with a 51% chance of rain that I’m sure we won’t see.

PS: For the hardcore condition fans:

It feels like 24

Wind is out of the SW at 14km/h

Visibility is 16.1km (not counting the fact that between walls and other buildings I probably can’t see more than 100 meters.


Hunter Curren

QA Analyst 3 : Hearthstone

Blizzard Entertainment

William writes:

An interesting anomaly that you might be interested in discussing:  A eukaryote without a mitochondrial organelle

A. Karnkowska, et al. A eukaryote without a mitochondrial organelle. Current Biology. Vol. 26, May 23, 2016. doi: 10.1016/j.cub.2016.03.053.

Leave a Reply

Your email address will not be published. Required fields are marked *