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In the last few years, an important number of 
emerging and re-emerging diseases have been 
associated with members of the Flavivirus 
genus and Flaviviridae family. Some examples 
are West Nile virus (WNV) in North America 
and dengue virus (DENV) in tropical and sub-
tropical areas of the world. DENV transmis-
sion has been vigorously emerging in a growing 
number of countries over the last two decades. 
Many factors have contributed to the spread 
of the mosquito vector and the disease, among 
others, via the urbanization process, which has 
left regions of the world without sufficient run-
ning water, septic tank systems or inefficient 
waste management [1,2]. It is estimated that 
dengue annually affects 100 million people, 
with 2500 million people living in areas at risk 
of disease transmission. Dengue infection can 
manifest in three clinical forms of increasing 
severity, classical dengue fever, dengue hemor-
rhagic fever and dengue shock syndrome [3]. 
The classic dengue fever is an acute, infectious, 
self-limited disease characterized by high-grade 
fever, headache, arthralgia and myalgia. Dengue 
hemorrhagic fever is distinguished from classi-
cal fever by plasma leakage and thrombocyto-
penia. In severe cases, circulatory failure, shock 
(dengue shock syndrome) and death can take 
place [4]. Hemorrhagic fever and dengue shock 
syndrome are the most serious clinical mani-
festations of viral infection and it has been sug-
gested that antibody-dependent enhancement 
and immuno pathological mechanisms are 

implicated in such complications [5–8]. Four dif-
ferent serotypes of DENV have been recognized 
(DENV1, DENV2, DENV3 and DENV4) 
and, within each serotype, various genotypes 
are recognized [9]. Morphologically, DENV is 
a spherical particle of approximately 50 nm in 
diameter, containing a nucleocapsid of 30 nm 
surrounded by a lipid envelope. Two struc-
tural proteins, the envelope (E) and membrane 
proteins (M), are inserted in the lipid mem-
brane [10,11]. The glycoprotein E contains most 
of the antigenic determinants of the virus and is 
essential for viral attachment and entry [12–16], 
while protein M, synthesized as the precursor 
(prM), functions as a chaperone during matura-
tion of the viral particle [10]. The nucleocapsid 
is composed of the capsid protein (C), a highly 
basic protein with affinity to RNA, associated 
to the genome [17]. The viral genome is a positive 
polarity ssRNA of approximately 11 kb. This 
RNA contains a type I cap structure (m7Gpp-
pAmpN2), located at its 5 -́end, and lacks the 
poly(A) tail at its 3 -́end. As with all positive-
strand viruses, the genomic RNA is infec-
tious [18]. The unique long open reading frame 
of DENV genome, flanked by two untranslated 
regions (UTRs), which contain structural and 
functional elements required for viral trans-
lation and replication [19], is translated into a 
polyprotein that is processed co- and post-trans-
lationally, by cellular and viral proteases, to pro-
duce ten mature viral proteins. The N-terminal 
region encodes the structural proteins C, prM 
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and E, followed by the nonstructural proteins 
NS1, NS2A, NS2B, NS3, NS4A, NS4B and 
NS5 [18,20]. The N-termini of prM, E, NS1 and 
NS4B are cleaved by the host signal peptidase 
located in the lumen of the endoplasmic reticu-
lum (ER), whereas the processing of most of 
the other nonstructural proteins, as well as the 
C-terminus of the C protein, is carried out by 
the viral protease NS2B -3 in the cytoplasm of 
infected cells [21–23]. Cleavage of the C-terminus 
sequence of NS1 is carried out by an unknown 
protease resident of the ER [24], while the furin 
protease, located in the Golgi apparatus, medi-
ates cleavage of prM to M during virion matura-
tion [25,26]. Most of the nonstructural proteins 
are involved in flavivirus replication, which 
occurs in close a ssociation with internal cellular 
membranes [27,28]. 

The first step in DENV infection is bind-
ing to the cellular receptors on the surface of 
the target cell [29–34]. This interaction induces 
the virion internalization by receptor-mediated 
endocytosis and subsequent fusion of the virus 
with the endosomal membrane, releasing the 
viral genome in the cell cytoplasm [35–42]. Since 
the viral RNA can act as mRNA, the DENV 
genome is associated with the rough ER where 
it is translated. During viral translation several 
changes in the host cells occur. One such change 
appears to be common in RNA viruses and is 
the induction of membrane structures that pro-
vide a membrane-bounded microenvironment 
required for RNA synthesis and viral morpho-
genesis. Replication of many positive-strand 
RNA viruses is intimately linked to membrane 
structures that enfold around the active repli-
cation complexes (RCs) [43]. Viral replication 
occurs in two steps, first the positive-polarity 
RNA is copied to an RNA of negative polarity, 
which, in turn, serves as a template for the syn-
thesis of multiple strands of RNAs of positive 
polarity. The positive-polarity RNA can then 
be used for translation, for further rounds of 
synthesis of RNA of negative polarity, or can 
become associated with structural proteins C, E 
and M to form the viral progeny [44,45]. Finally, 
immature virus particles travel in vesicles to 
the Golgi apparatus where they undergo gly-
cosylations to eventually travel through secre-
tory vesicles outside the cell. During the latter 
process, the furin cleaves prM in M to generate 
mature virions, which is the last step in viral 
morphogenesis [43,46]. 

One of the key steps in the viral replicative 
cycle is viral RNA replication. The replication 
process for the DENV genome has been widely 

studied, and while some important features have 
been determined, others are not yet fully under-
stood. Three main elements are necessary for 
DENV replication: cis-acting elements, mainly 
located within or in close proximity to both 
5́ - and 3 -́UTRs; trans-acting factors, both of 
cellular and viral origin; and viral-induced mem-
branes, which wrap RCs and compartments for 
viral morphogenesis.  

Cis-acting elements 
Cis-acting elements are proposed to function as 
promoters for RNA replication. The regulatory 
sequences in the flavivirus genomic RNA have 
been extensively studied and have been located 
at both ends of the RNA, mainly at the UTRs. 

Specifically, for DENV genomic RNA, the 
regulatory sequences are mainly formed by stem-
loop and linear sequences, located at both ends 
of the molecule (Figure 1) [47–51]. In the 5́ -UTR of 
the DENV genome six elements have been iden-
tified, termed stem-loop A (SLA), stem-loop B 
(SLB), 5´-upstream AUG region (5´-UAR), 
5́ -downstream AUG region (5́ -DAR), 5́ -cycli-
zation sequence (5́ -CS), and C-coding region 
hairpin (cHP). The last three elements are 
located within C protein-coding region [52–55]. 

The SLA domain is the stem loop structure 
located at the 5´-end of the genomic RNA 
(Figure  1), which is essential for viral replica-
tion. This structure has been predicted in other 
members of the flavivirus genus, suggesting that 
it is highly conserved. The Y-shaped structure 
predicted in the SLA domain was confirmed 
by enzymatic and chemical probing assays. The 
SLA structure has been divided into six regions: 
stem 1 (S1), UU bulge, stem 2 (S2), side-stem 
loop, stem 3 (S3) and top loop. Mutagenesis 
ana lysis of SLA structure, shows that the base 
pairing at the bottom of the SLA, which cor-
responds to S1 and S2, is necessary for viral rep-
lication regardless of the nucleotide sequence. 
Furthermore, while a single UU bulge is essential 
and sufficient for DENV replication, mutations 
that alter the sequence or disrupt the structure of 
the top loop region of the SLA impaired DENV 
replication. In addition, sequences downstream 
of the SLA modulate RNA synthesis and a mini-
mum of ten residues between the SLA and the 
SLB domains are necessary for an efficient RNA 
synthesis. Finally, the sequence and structure 
adopted by the top loop region are essentials for 
viral replication. The use of different DENV 
replicon systems has demonstrated that SLA is 
involved in RNA replication and not in viral 
translation [53,56]. 
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Another important function of the SLA 
sequence is the binding of NS5. The interac-
tion between NS5 and SLA is necessary for 
in vivo and in vitro viral replication [19,53]. Of note 
is the fact that there are common structural ele-
ments at the 5́ -stem loops (SLs) of the different 
flaviviruses [19,57–63], and they can be exchanged 
at least between WNV and DENV [19], sug-
gesting that similar mechanisms for RNA syn-
thesis are functioning in other members of the 
same genus. 

The second element, present within the 
5́ -UTR, is the SLB domain (Figure 1). The pres-
ence of this element, which is also conserved 
among flaviviruses, contributes to viral replica-
tion; however, its structure is not essential. The 
importance of the SLB sequence is mainly owing 
to the presence of a sequence termed 5́ -UAR, 
which is complementary to the 3 -́UAR sequence 
present in the 3 -́UTR  (Figure 1). Both sequences 
are involved in genome cyclization [59,60,62]. 

Recently, an additional stretch of six nucle-
otides that may be involved in RNA replication 
and DENV circularization has been identified. 
This sequence, CCAACG, is located down-
stream of the AUG and designated 5´-DAR, 
is conserved in the four serotypes of DENV, 
and was predicted to be complementary with a 
sequence located in the 3 -́end, termed 3 -́DAR 
(Figure 1) [64]. DAR sequences are suggested to be 
important elements for the 5́ –3´ genome inter-
action, indispensable for minus-strand RNA 

replication, and alternatively, DAR might play 
a role in the modulation of the replicative viral 
cycle as a potential protein binding site. 

A conserved hairpin structure in mosquito- 
and tick-borne flavivirus is located 12–16 nt 
downstream the AUG start codon within the 
C-coding region, termed cHP  (Figure 1). This 
structure is 14-nt long and has been proposed 
to have a dual function in the DENV replicative 
cycle. During translation, this element appears 
to be responsible for an efficient translation 
initiation from the C-start codon. Mosquito-
borne flaviviruses have poor translation context 
sequences; thus, it has been proposed that the 
cHP element compensates for this deficiency, 
making the scanning translation machinery 
stall in the first AUG [52]. Furthermore, it has 
been demonstrated that this element is also 
important for RNA synthesis, but its exact 
function during replication remains to be deter-
mined [65]. These two distinct functions of the 
cHP are sequence independent, and structure 
and p osition dependent. 

However, the main sequence involved in 
genome cyclization is a 10-nt sequence, highly 
conserved among flaviviruses, located within the 
C protein-coding region. This element, known 
as the CS, located at the 5́ -end, together with its 
complementary sequence present at the 3 -́UTR 
(3´-CS) (Figure  1), favored close RNA–RNA 
interaction between the 5́ - and 3 -́ends of the 
viral genome [66,67]. In the case of DENV, these 

Figure 1. Dengue virus genomic RNA. Cis-acting elements playing essential roles in the viral replication process are emphasized. 
At the 5´-end is located the conserved structure known as SLA, essentially consisting of three stems, S1–3, the TL, as well as the SSL 
region. The next structure is SLB, which contains the 5´-UAR and, in the C-coding region, the 5´-DAR, the hairpin structure (cHP) and the 
5´-CS. At the 3´-UTR the VR, the Y-shape structures, termed A2 and A3, contain conserved sequences RCS2 and CS2, respectively. The 
3´-CS, the complementary sequence to the 5´-DAR, termed 3´-DAR, and the conserved 3´-SL containing the 3´-UAR are shown. 
C: Capsid; CS: Cyclization sequence; DAR: Downstream AUG region; E: Envelope; prM: Precursor membrane; S: Stem; SL: Stem loop; 
SLA: Stem-loop A; SLB: Stem-loop B; SSL: Side-stem loop; TL: Top loop; UAR: Upstream AUG region; UTR: Untranslated region; 
VR: Variable region.
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sequences are CAAUAUGCUG in the 5́ -CS, and 
CAGCAUAUUG in the 3 -́CS [59]. The interac-
tion between both CS sequences is required to 
allow stable association of both UAR sequences, as 
have been demonstrated by the solution structure 
of the 5́ –3´ interaction, as well as by c hemical and 
enzymatic ana lysis of the complex [56]. 

In summary, direct RNA–RNA inter actions 
take place between the 5 -́ and 3 -́ends of the 
DENV genome mediated by three pairs of 
inverted complementary sequences, namely 
CS and UAR and, most likely, DAR sequences 
[48,55,57,59,60,64]. 

The RNA–RNA interaction was demonstrated 
by visualization of individual circular RNA mol-
ecules by atomic force microscopy [59]. Moreover, 
the importance of the presence of the cycliza-
tion sequences at the 5́ - and 3 -́ends of the viral 
genome was initially demonstrated by in vitro 
replication assays using recombinant DENV 
NS5 polymerase [66,67], and later by the use of 
DENV replicons, showing that the cyclization 
process is essential for DENV RNA synthesis but 
it is not required for viral translation [60]. 

On the other hand, the 3 -́end of the flavi-
virus genome also contains important cis-act-
ing elements for viral replication. Downstream 
of the viral polyprotein stop codon there is a 
variable region (VR) followed by two structural 
elements, termed A2 and A3, which have been 
predicted using folding algorithms to form iden-
tical dumbbell structures (Figure 1). Finally, at the 
3 -́end, there is a highly conserved stem loop 
structure, known as 3 -́SL. 

The importance of the VR in dengue replica-
tion was demonstrated by introducing mutations 
in recombinant cDNA clones or in a replicon 
context in mammalian cells. In both cases, it 
was observed that VR modulates viral growth 
and RNA synthesis in mammalian but not in 
mosquito cells [60,68]. The basis of the differential 
behavior of a sequence in two different cell types 
could be explained by the presence of a different 
set of host factors acting to modulate the RNA 
synthesis in each host. However, further stud-
ies are required to determine the precise role of 
this sequence. 

In addition, a clinical study using isolates from 
patients from Thailand demonstrates that the 
VR sequence contains insertions or deletions. 
Interestingly, in this study, the viruses with inser-
tions showed higher levels of replication with 
respect to virus without insertions. However, no 
correlation between severity of the disease and 
specific sequences or structures within the UTRs 
was observed [69]. 

Downstream of the VR there are two elements 
known as A2 and A3 domains, which have simi-
lar secondary structures and act as modulator 
elements for RNA synthesis. Both domains con-
tain highly conserved structures named RCS2 
and CS2, respectively (Figure 1). Deletion mutants 
within RCS2 and CS2 of the DENV4 cDNA 
clone demonstrated that these elements were not 
essential for DENV replication [48]. However, 
a 30-nt deletion in the A3 domain induced an 
attenuated phenotype, and experimental evi-
dence indicates that this deletion does not alter 
the translation process but severely impairs RNA 
synthesis [70]. The 3 -́CS, which is responsible for 
genome circularization is located downstream of 
the A3 domain. 

At the end of the 3 ,́ there is a conserved 3 -́SL 
structure (Figure 1), which has been demonstrated 
to be essential for viral replication by several 
experimental approaches. It was observed that in 
the infectious clone of DENV2, an 11-nt element 
located at the bottom of the SL was indispensable 
for viral replication and the structure at the top of 
the SL was critical for viral growth in mammalian 
cells [71]. Moreover, the sequence and structure 
present in the penta nucleotide (CACAG) located 
at the top of the 3 -́SL of WNV is important for 
an efficient viral RNA synthesis [72]. The 3 -́UAR 
sequence, which is complementary to 5́ -UAR, is 
located within the 3 -́SL domain. 

Finally, the dinucleotide terminal CU
OH

 of 
the flavivirus genome has been demonstrated to 
play a critical role in the replication of Kunjin 
virus, WNV and DENV [72–74]. The functional 
involvement of that sequence in r eplication could 
be related to the assembly of the RC. 

The actual model for DENV minus-strand 
RNA synthesis proposes that after viral trans-
lation and accumulation of viral proteins, the 
cis-elements CS, UAR and possibly DAR induce 
circularization of the viral genome. In this con-
formation, the NS5 polymerase binds to the 
SLA, which in a circularized molecule is close 
to the 3 -́end, the site where minus-strand RNA 
synthesis initiates. 

Importantly, mutations in CS or UAR 
sequences, which are known to prevent cycli-
zation, inhibit viral replication but not transla-
tion, indicating that cyclization is only required 
for replication. This fact would support the 
notion that once the viral RNA is in the cyto-
plasm of the infected cells, after decapsidation 
it adopts a linear conformation favoring viral 
translation, and later, when viral proteins are 
synthesized, viral RNA cyclization occurs to 
allow viral replication initiation. Although 
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this model was correct, the question remains 
as to which elements, molecules or conditions 
are involved in switching translation to repli-
cation or in altering the conformation of the 
viral RNA. The conformation of viral RNA, 
and its association with cellular or viral pro-
teins in different compartments of the ER, are 
important aspects that need to be analyzed in 
order to fully understand regulation of DENV 
translation and replication. 

To this respect, in recent years, some interest-
ing features related with DENV replication have 
been described. The first is a repair mechanism 
of 3 -́end deletions. The proposed repair mecha-
nism involves two steps: first, a nontemplate-
based nucleotide addition takes place to restore 
the structure of the 3 -́SL and is carried out by 
the terminal nucleotidyl transferase activity of the 
NS5; and the second step involves the evolution-
ary selection of the 3 -́end sequences, based on 
RNA structures with the highest fitness that can 
support viral replication [75]. Given the impor-
tance of the sequences present in the 3 -́end of 
the viral RNA, it is likely that this repair mecha-
nism plays an important role in viral infection 
and merits more detailed analysis. 

The other feature described in flavivirus rep-
lication is the accumulation of a small viral sub-
genomic noncoding RNA species. These shorter 
RNAs, observed in DENV infection with the 
four serotypes [76], have been characterized in 
detail for WNV [77,78]. This subgenomic RNA 
presumably derives from the incomplete degra-
dation of the genomic viral RNA carried out 
by the 5́ –3´ XRN1 exoribonuclease in P bod-
ies [78]. The length of this RNA is approximately 
0.4 kb for DENV (corresponding to the length 
of the DENV 3 -́UTR), and is given by the pres-
ence of a stable RNA stem loop structure in the 
beginning of the 3 -́UTR, where the XRN1 is 
stalled [76,78]. It has been proven that this sub-
genomic RNA is essential for viral-induced 
cytopathocity and pathogenicity; however, the 
precise molecular mechanism of action of these 
molecules is still unknown [78]. 

Trans-acting factors 
RNA synthesis is a highly regulated process, 
which depends on cis- and trans-acting factors. 
Cis-acting elements, as already described, play 
different roles during viral replication, and some 
of them are independent of the presence of pro-
teins, while some others involve the inter action 
with trans-acting factors. Both trans-acting fac-
tors and cis-acting elements must act coordi-
nately to produce adequate levels of viral RNA 

at the right sites. The specificity and affinity of 
the viral RNA for certain proteins suggests that 
they are important elements in the viral repli-
cative cycle. Two types of trans-acting factors 
have been involved in viral replication: viral and 
cellular factors. 

Viral trans -acting factors
It has been previously described that DENV 
RNA replication takes place in close association 
with viral-induced membranes. Partial frac-
tionation of cytoplasmic extract from infected 
cells and coimmunolocalization assays show 
that the membrane fractions enriched in RNA-
dependent RNA polymerase activity contain the 
viral proteins NS1, NS2A, NS3, NS4A, NS4B 
and NS5 [79–82]. 

Immunolocalization experiments performed 
with different cell types indicate that pro-
teins NS1, NS4A and NS4B colocalized with 
the RNA replication sites [80,81]. Although the 
specific role of these proteins in viral replica-
tion is not completely understood, it is possible 
that NS1 and the hydrophobic protein NS4A 
act as structural components of the replication 
complex, anchoring the complexes to the viral-
induced membranes. The genetic interaction 
between NS1 and NS4B has been observed by 
trans-complementarity assays [83]. In addition, 
it has been demonstrated that NS4B interacts 
with NS3, and this association modulates the 
NS3 activity. The interaction of NS4B with 
NS3 causes NS3 dissociation from ssRNA and 
p romotes dsRNA unwinding activity [84]. 

The multifunctional and multidomain pro-
teins NS3 and NS5 are the only proteins with 
catalytic activities encoded by DENV. The 
NS3 protein is a viral protease (NS3pro) that 
requires association with the cofactor NS2B to 
form a heterodimeric complex, and it also has 
a RNA triphosphatase as well as RNA helicase 
a ctivities [85–88].

Besides host-encoded proteases, the NS3pro is 
important to produce individual and functional 
proteins from the 375-kDa viral polyprotein. 
It mediates the cleavage of the peptide bonds 
between C–prM, NS2A–NS2B, NS2B–NS3, 
NS3–NS4A and NS4A–NS5 [20]. In addition, 
the role of the RNA triphosphatase and helicase 
activities of NS3 has been demonstrated to be 
essential for viral replication [88]. 

Since RNA replication takes place in the ER 
membranes [89], the cap type I structure has to be 
added by a protein located in this specific com-
partment; for DENV, the cap is added by the viral 
protein NS5. The NS5 consists of a N-terminal 
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guanylyltransferases and methyltransferase [90–93] 
and a C-terminal RNA-dependent RNA 
polymerase domain [94]. For flavivirus, both 
guanine-N7 methyltransferase (N7-MTase) and 
nucleoside-2 -́O-methyltransferase activities have 
been identified, but only the N7-Mtase activity 
has been shown to be essential for RNA replica-
tion [95,96]. It is likely that flavivirus RNA capping 
and methylation are coupled to RNA synthesis 
(for review see [96]). However, further experi-
ments are required to elucidate the specific steps 
and exact mechanism for viral RNA capping. 

In addition to the methyltransferase activity, 
NS5 also has RNA-dependent RNA polymerase 
activity (RDRP). The C-terminal polymerase 
domain of NS5 is essential for positive- and neg-
ative-strand RNA synthesis. Using recombinant 
DENV NS5 (RDRP), it has been demonstrated 
that in vitro RNA synthesis requires sequences 
present at the 5́ - and 3 -́end of the genome as 
previously described [66, 67]. Moreover, it has 
been shown, by atomic-force microscopy, that 
the NS5 RDRP domain of DENV2 binds to 
the circularized DENV2 genome [53]. The pres-
ence of a promoter element in the SLA enhances 
de novo negative-strand RNA synthesis and 
t emplate discrimination [53]. 

Since the main functions known for NS5 
are methyltransferase and the RDRP, it would 
be expected that this protein is mainly located 
within the ER; however, most of the protein 
is located in the nucleus. The nuclear localiza-
tion of NS5 can be explained by the presence 
of a bipartite nuclear localization sequence 
(aNLS and bNLS) in the region between the 
N-terminal methyltransferase and C-terminal 
RDRP domains of NS5. The aNLS, recognized 
by the importin a/b, is considered to be responsi-
ble for the nuclear localization of NS5; however, 
bNLS is also recognized by importin b1 nuclear 
transporters. Moreover, it has been established 
that NS5 is able to be exported from the nucleus 
to the cytoplasm by the exportin CRM1 and, 
hence, can shuttle between the nucleus and 
the cytoplasm [97]. Interestingly, the DENV2 
NS5 protein has been found to accumulate in 
the nucleus late in infection as a hyperphos-
phorylated form that is unable to bind NS3, 
whereas the hypophosphorylated form of NS5 
is cytoplasmic and complexed to NS3. Thus, 
it is also possible that phosphorylation and the 
interaction with NS3 may also be modulating 
the compartamentalization and function of the 
viral RNA replicase [98]. To this respect, it has 
been demonstrated in vitro that the interaction 
between both proteins enhances the NTPase 

activity of NS3 [99]. This activity is essential for 
the conversion of the replicative form of RNA 
to the replicative intermediate [100,101]. 

It has been suggested that the presence of NS5 
into the nucleus can antagonize the antiviral 
response by modulation of IL-8 production in 
infected cells [102]. IL-8 has been speculated to 
enhance viral production by antagonizing the 
effects of interferons [103], as has been described 
for other viruses, including picornaviruses, 
encephalomyocarditis virus, HCV, citomegalo-
virus and HIV [103–107]. However, a more direct 
role for IL-8 in inhibiting virus replication has 
recently been suggested [107], implying that inhi-
bition of IL-8 production may serve to assist virus 
production. Thus, it has been suggested that after 
initial induction of IL-8 transcription by NS5 
alone or in cooperation with host cell factors [102], 
the production of IL-8 could be regulated by the 
concentration of nuclear/cytoplasmic NS5 and 
its interaction with cellular and/or viral fac-
tors [108]. These studies imply that, in addition 
to being a key enzyme in viral RNA replication, 
NS5 may have a role in viral pathogenesis related 
to its localization in the nucleus. Further studies 
directed towards determining the levels of NS5 
in the nucleus and the cytoplasm, the level of 
phosphorylated forms of this protein, as well as 
its interaction with other cellular or viral factors 
into the nucleus are required in order to extend 
our knowledge about the function of NS5 in viral 
replication and pathogenesis. 

Cellular trans -acting factors
It is well established that cellular factors are 
important components of the RCs of several 
viruses. The initial approach to find cellular pro-
teins that could be involved in viral replication 
is to determine which factors are able to interact 
with the cis-acting elements. This approach has 
been used successfully for several viral systems 
to identify host factors involved in viral replica-
tion. Using mobility-shift assays, UV-induced 
crosslinking and RNA-affinity chromatography, 
several proteins have been found to bind to the cis-
acting elements of flavivirus RNAs. These factors 
are elongation factor 1a (EF1a), poly pyrimidine 
tract binding protein (PTB), La, T-cell intracellu-
lar antigen-1 (TIA-1), the related protein (TIAR), 
Y Box binding protein-1 (YB-1), calreticulin, PDI 
and hnRNP A1, A2/B1 and Q [109–114]. 

Elongation factor 1a 
Although the regular function of the transla-
tion EF1a is to catalyze the elongation step in 
mRNA translation, it has also been implicated in 
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cytoskeleton organization, ubiquitin-mediated 
protein degradation, cell proliferation and senes-
cence (for review see [115]). The use of different 
methodologies, such as electrophoretic mobility 
shift assay (EMSA), mobility supershift assays, 
UV-crosslinking and coimmunoprecipitation 
assays demonstrate that EF1a binds to WNV 
and the DENV 3´-CS–SL region [109,116]. 
Moreover, using footprinting assays, deletion/
mutation analyses and RNA binding assays, the 
sequence CAC, located at the main stem of the 
3 -́SL, was found to be the main binding site 
of EF1a to WNV RNA [109]. This protein has 
been found to be involved in WNV genome rep-
lication; however, its function during DENV 
replication is unknown. One possible function 
for EF1a could be targeting the RNA to the 
compartment of viral replication, since it has 
been found associated with the ER membranous 
fraction. Besides its interaction with flavivirus 
genomic RNA, EF1a is implicated in binding 
and activation of the RNA polymerase RNA-
dependent complex of other RNA viruses, such 
as vesicular stomatitis virus [117]. 

Polypyrimidine tract binding protein
The PTB protein is a widely expressed pro-
tein containing four RNA recognition motifs 
involved in RNA interaction. It shuttles between 
the nucleus and cytoplasm and has multiple roles 
in mRNA metabolism, including localization, 
polyadenylation, regulation of alternative splic-
ing and alternative translation initiation, among 
others [118–121]. The preferred RNA-binding site 
of PTB is a U/C tract whose interaction could 
cause a conformational change in the RNA [120]. 

The PTB protein also has the ability to bind 
to the 5́ - and 3 -́UTRs of several viral genomic 
RNAs favoring viral translation and replica-
tion [122–125]. In this way, the role of PTB has 
been extensively studied in the replicative cycle 
of picornaviruses and HCV [126–128]. In both 
cases, PTB binds to specific sequences within 
the 5́ -UTR, promoting translation initiation, 
dependent on an internal ribosomal entry site. 
PTB also binds to the 3 -́UTR of several flavi-
viruses, such as DENV, Japanese encephalitis 
virus and HCV [110,129,130]. The specific bind-
ing of PTB to the 3 -́SL of DENV was initially 
demonstrated in vitro through EMSA and 
UV-crosslinking assays [110]. 

The participation of PTB in the HCV 
and DENV replicative cycles was evaluated 
after silencing and/or overexpression of PTB. 
Increased PTB expression levels induced aug-
mentation in viral RNA levels determined by 

real-time reverse transcriptase PCR, as well as in 
the levels of the reporter protein encoded by viral 
replicons, while the opposite was observed after 
silencing the protein expression [131–134]. These 
results suggest that PTB is a positive regulator of 
translation and replication for HCV and DENV. 

Since most of the functions of PTB are car-
ried out in the nucleus, the major location of 
this protein is in the nuclear compartment; how-
ever, it also shuttles between the nucleus and 
the cytoplasm [120]. PTB translocates from the 
nucleus to the cytoplasm during DENV infec-
tion in Vero and in Huh-7 cells. The observed 
translocation was more prominent in Vero than 
Huh-7 cells, suggesting that intrinsic differences 
between these two cell types could be related to 
the observed difference in translocation efficien-
cies [131]. Colocalization studies with NS1, NS3 
and NS5 in the ER and immunoprecipitation 
with NS4A has implicated PTB in the forma-
tion of the replication complex [131–133], but the 
precise role of PTB during DENV infection is 
still unknown. 

The translocation of PTB from the nucleus 
to the cytoplasm has been documented dur-
ing infection with several other viruses, such 
as poliovirus, rhinovirus, feline calicivirus, 
HCV and DENV [131,132,134–136]. PTB has 
been involved in the regulation of viral internal 
ribosome entry segment-dependent translation, 
as well as in the replication of mouse hepatitis 
virus and HCV [131,136]. In feline calicivirus rep-
lication, PTB has been proposed to play a role in 
the switch from translation to replication, since 
it downregulates viral translation and stimulates 
viral RNA replication [135]. In other viruses, such 
as coxsackievirus B3, PTB has been implicated 
in the circularization of the genome, favoring 
the interaction between the 5 -́ and 3´-UTRs 
and permitting an efficient viral translation [137]. 

TIA-1 & TIAR
The TIA-1 and the related protein, TIAR, are 
broadly expressed host factors carrying out mul-
tiple functions mainly related to mRNA modi-
fication pathways and apoptosis [138–140]. TIA-1 
and TIAR shuttle between the nucleus and the 
cytoplasm, where they bind to the 3 -́UTR of 
several cellular mRNAs causing translational 
inhibition. In addition, both proteins have been 
involved in the cytoplasmic storage or degrada-
tion of mRNA in structures known as stress 
granules [141,142]. These host factors interact with 
the 3 -́UTR of the negative strand of WNV, spe-
cifically with two short AU sequences [111]. The 
ability of TIA-1 and TIAR to bind those regions 
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was associated with a higher viral replication effi-
ciency determined by plaque size, virus yield and 
genomic RNA levels [111]. Both TIA-1 and TIAR 
have been found to colocalize with WNV and 
DENV nonstructural proteins and with dsRNA 
in the perinuclear region of infected cells, thus 
suggesting a role for these proteins in viral rep-
lication [143]. However, the ability of TIA-1 and 
TIAR proteins to bind to the positive or nega-
tive RNA strands of DENV is unknown. Taking 
into consideration the cellular function of both 
proteins, it has been proposed that they could 
act as stabilizers of the 3 -́SL(-) region, induc-
ing conformational changes that prepare the 
RNA to interact with the replication complex 
to i nitiate the positive-strand RNA synthesis. 

Y-Box binding protein-1
The YB-1 protein is a cold shock factor involved 
in several cellular functions, such as DNA repair 
of growth-related genes and stress response to 
extracellular signals. In the cytoplasmic com-
partment it has been described as an mRNA 
chaperone and translational modulator [144]. 

This protein was identified as one of the pro-
teins eluted from an affinity chromatography 
column prepared with the 3 -́UTR of genomic 
DENV RNA. Several other RNA binding pro-
teins were eluted with YB-1, such as hnRNPQ, 
A1, A2/B1 and Q [114,144]. The interaction of 
YB-1 with the viral RNA was further confirmed 
by EMSA and footprinting assays. In addition, 
in silico studies predicted several potential YB-1 
binding sites along the DENV 5́ -UTR and the 
nonstructural protein-coding region, but these 
predictions have not been proven. The signifi-
cance of the interaction of YB-1 with DENV 
genome is unknown. However, the silencing of 
YB-1 in DENV-infected cells suggests that this 
protein may have a role as an antiviral factor, or it 
could be participating in the switching from viral 
translation to replication. In addition, it might be 
implicated in antiviral early immune response as 
part of the interferon signaling pathway, as has 
been described for adenovirus infection [114,145]. 

La
The La protein is an RNA binding protein, 
which plays several roles in the cell. The best-
established roles for La protein are to provide 
protection against 3 -́exonucleolytic RNA deg-
radation and to bind and splice the RNA pol III 
primary transcripts [146]. 

The interaction of La protein with viral RNAs 
in other systems, including vesicular stomatitis 
virus, human parainfluenza virus, Rinderpest 

virus, rabies, HIV, HBV, HCV and several 
picornaviruses, has been reported [147–153]. In 
those systems, translocation of the La protein 
from the nucleus to the cytoplasm have been 
observed, and it has been suggested that La may 
function in RNA stabilization, as well as in viral 
translation and/or replication. 

Furthermore, the La protein has been recently 
involved in the inhibition of interferon activa-
tion through its interaction, in early times 
postinfection, with the negative-strand RNA of 
respiratory syncytial virus and with the Sendai 
viral genome. This interaction avoids the recog-
nition and signaling by an intracellular sensor 
of infectious RNA, RIG-I, contributing to the 
viral evasion of the host immune system [154]. 

For flavivirus, it has been reported that La 
protein binds to a loop of the 3 -́UTR and has 
a functional role in the replication of Japanese 
encephalitis virus [155]. For DENV, the inter-
action of La protein with the 5́ - and 3 -́UTR 
(3 -́SL–3 -́CS) of the genomic RNA, as well as 
with the 3 -́UTR of the negative-strand RNA, 
was demonstrated by EMSA, UV-crosslinking 
and immunoprecipitation assays [110,112,113]. 
Furthermore, in DENV-infected cells, the La 
protein is redistributed from the nucleus to the 
cytoplasm [156]. 

Since La protein interacts in vitro with both 
ends of the DENV genome, it has been sug-
gested that it could play a role in the stabiliza-
tion of the replication complex or in switching 
translation to replication. To this respect, the 
addition of recombinant La protein to an in vitro 
replication system inhibits RNA synthesis in a 
dose-dependent manner, suggesting that La 
protein downregulates the DENV replicative 
cycle [156]. Of note is the fact that La protein 
was immunoprecipitated with NS3 and NS5, 
further suggesting a role for La protein in the 
DENV replicative cycle [113]. 

Replication complexes  
The replication process for several RNA viruses 
requires the induction of membrane structures 
that provide a membrane-bounded micro-
environment. This environment separates viral 
RNAs and proteins from the cellular compo-
nents allowing for efficient RNA synthesis 
and viral morphogenesis. Although all groups 
of positive-strand RNA viruses use membrane 
structures, their architecture and origin differs 
among the various groups (reviewed in [157]). 
DENV-induced membrane structures show 
positive immunolabeling with calnexin, PDI 
and CLIMP63, indicating that membranes are 
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derived from the ER [158]. Moreover, positive 
immunolabeling with syntaxin 17 indicates that 
virus-induced membranes may also be derived 
from the smooth ER [159]. For Kunjin virus and 
other flavivirus-infected cells, the trans-Golgi 
marker b-1-4-galactosyltransferase, as well as 
other trans-Golgi markers, such as p230 and 
TGN46, also localized within the vesicles, sug-
gesting that trans-Golgi membranes are also 
involved in the formation of flavivirus RCs [160]. 

Apparently, upon DENV infection, genomic 
RNA associates with ribosomes at the ER during 
viral translation. Viral proteins are processed co- 
and post-translation forming the RC. Assembly 
of the RC initially requires the proliferation and 
formation of invaginations of the ER membranes. 
Presumably, this process is induced by NS4A and 
NS3, in conjunction with cellular and other viral 
proteins [161–163]. It is thought that NS4A oligom-
ers, intercalated into the luminal leaflet of the ER 
membrane, through the peripheral membrane 
domain, would dilate the luminal leaflet forming 
the invaginations (Figure 2). These invaginations 
give rise to membranous vesicles or vesicle packets 
that have been described as the site for viral repli-
cation, since NS proteins and dsRNA have been 
located into these membranous structures. The 
interior of the vesicles are connected with the sur-
rounding cytosol via a pore (Figure 2). Although 
the composition of the pore and its biogenesis 
is unknown, it is quite likely that it regulates 
the import of molecules or factors required for 
viral replication and the export of newly formed 
genomes for translation or assembly. However, 
the proteins or factors involved in the regulation 
or ‘gating’ process are not known. In this regard, 
Welsch et al. calculated that even though the size 
and volume of the vesicle may harbor up to 50 
ssRNA molecules, the electron lucent appearance 
of the vesicles suggests that they contain only 
a few RNA molecules [164]. It is thought that 
following replication within the virus-induced 
vesicles, the RNA is exported to the convoluted 
membranes (CMs), which are located in close 
proximity with the vesicles (Figure 2). For Kunjin 
virus, the immuno labeling of the CM with anti-
bodies anti-NS3 and NS2B suggests that CMs 
are the sites for polyprotein processing [165,166]. 
However, for DENV, this aspect is unclear. 
The presence of syntaxin 17 and the absence of 
ribosomes in the CM induced by DENVs suggest 
that the CMs are derived from smooth ER mem-
branes. The close proximity between the CM 
and virus-induced vesicles and the presence of 
NS3 in the CM allowed Wesch et al. to speculate 
that CM may represent a storage site for proteins 

and lipids required for DENV replication [164]. 
Since it is known that translation and replica-
tion are coupled processes and that replication 
of the nascent RNA molecule is required for 
packing [57], it could be expected that nucleo-
capsid formation and virus budding into the ER 
lumen occur in close proximity of the vesicles 
and the CM, where viral RNA is released. To this 
respect, the first step in viral morphogenesis is 
the association between the RNA and the C pro-
tein to generate nucleocapsids. Recently, it has 

Exocytic vesicle

Golgi

CM/PC

ER

Lipid droplets? Nucleus

Viral RNA

Nonstructural 
proteins

Structural 
proteins

Figure 2. Coupling between dengue virus translation, replication and 
morphogenesis in viral-induced membranes. Upon infection, the viral genome 
associates with membranes from the ER. Ribosomes translate viral RNA in structural 
and nonstructural proteins. Both types of proteins are arranged in different sides of 
the ER membranes. Nonstructural proteins, such as NS3 and NS4A, and probably 
other cellular and viral proteins, induce invaginations in the ER. Inside these 
invaginations, RNA replication takes place. The interior of the vesicles is connected 
with the surrounding cytosol via a pore. Through this pore, the RNA is exported to 
the CM, which are located in close proximity to the vesicles. The first step in viral 
morphogenesis is the association of viral RNA with capsid protein, which has been 
found to be associated with lipid droplets. Virus budding through the ER occurs in 
close proximity to or opposite the vesicles. Finally, virions travel to distal ER and later 
to Golgi in secretory vesicles where virion maturation takes place.  
CM: Convoluted membrane; ER: Endoplasmic reticulum; PC: Paracrystalline arrays. 
Adapted with permission from [164].
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been described that the C protein accumulates 
around the lipid droplets (LDs) and that this 
association is crucial for infectious particle for-
mation (Figure 2). LDs are ER-derived organelles 
that contain a core of neutral lipids enclosed by a 
monolayer of phospholipids. Although the place 
and mechanism by which the C protein recruits 
the viral RNA to form the nucleocapsid are still 
uncertain, Samsa et al. have suggested that either 
the C protein associates with LDs early in the 
infection and then is mobilized to the ER during 
viral morphogenesis, or the genomic RNA inter-
acts with the C protein on the surface of LDs to 
form the nucleocapsids, which could be trans-
ferred to the ER membranes for the assembly of 
new viral particles [167]. To date, ultrastructural 
studies of RCs have not described the presence of 
LDs within viral-induced membranes. However, 
the fixation method used during sample prepa-
ration may have avoided its observation [167]. 
Further studies are required to elucidate the 
precise location of LDs and the dynamics of 
nucleocapsid f ormation within virus-induced 
membrane structures. 

After nucleocapsid formation, the viral enve-
lope has to be acquired. One important aspect 
suggested for DENV and other flaviviruses is 
that the viral envelope is obtained by budding 
into the ER lumen. Using electron tomography, 
Welsch et al. observed that budding of viral par-
ticles occurs in a close proximity to vesicles and 
CMs [164]. Immature viral particles accumulate 
in the lumen of dilated ER cisternae and are 
afterward transported to the cis-Golgi for further 
maturation. Viral particle accumulation occurs 
in specific membrane structures, which have 
been described as paracrystalline arrays (Figure 2). 

Despite the importance of membrane compo-
sition of DENV RCs, little is known about this 
aspect. For other members of the Flaviviridae 
family, such as HCV, it has been described 
that the RCs are present in cholesterol-rich 
membranes; moreover, the presence of choles-
terol is important for an efficient viral replica-
tion [168,169]. For DENV, it has been described 
that cholesterol depletion reduces viral yield, as 
well as viral RNA synthesis, suggesting that cho-
lesterol is necessary for viral entry and posten-
try processes [33,170–172]. Since viral replication 
and the morphogenesis take place in the virus-
induced membranes, it is likely that both pro-
cess are affected by cholesterol-disrupting drugs. 
Given that the exact composition and cholesterol 
content of the virus-induced membranes are 
unknown, more studies directed to understand-
ing this aspect are necessary. Moreover, it will be 

interesting to know if the amount of cholesterol 
and phospholipids composition are the same in 
the different membrane structures, vesicles, CM 
and paracrystalline arrays, and which participate 
in viral replication. 

It is clear that the subversion of cellular 
machinery and pathways is crucial for virus 
propagation and survival. In particular, induc-
tion of membrane proliferation and reorganiza-
tion seem to be central to flavivirus replication. 
Thus, the study of the different cellular and 
viral components involved in flavivirus replica-
tion and in inducing membrane proliferation is 
necessary for a comprehensive understanding of 
the viral replicative cycle, and to pave the way 
for the identification of specific antiviral targets. 

Conclusion 
Dengue virus, similar to many positive-strand 
RNA viruses, requires cis-acting elements, mainly 
located within the 5́ - and 3 -́UTRs, trans-acting 
factors from cellular and viral origin and viral-
induced membranes located within the ER, for 
viral replication. However, DENV and other fla-
viviruses differ from other positive-strand RNA 
viruses due to the fact that cyclization of the viral 
genome occurs through RNA–RNA interactions 
and does not require the presence of viral or cellu-
lar proteins. It is not known which elements trig-
ger viral cyclization, but the conformation of the 
viral RNA (linear or cyclizated form) may be an 
important regulator element of viral translation 
and replication. All nonstructural proteins from 
DENV are important trans-acting factors for 
viral replication. While some proteins are impor-
tant components for anchoring the RC to the 
ER membranes, others, such as NS3 and NS5, 
carried out the main catalitic acivities: NS3 as 
the helicase, nucleoside thriphosphatase and pro-
tease; and NS5 as RNRP and methyltransferase. 
Among cellular trans-acting factors, the nuclear 
proteins with affinity to RNA, such as PTB, La 
and YB-1, most likely play a role during viral 
replication. Finally, DENV infection induces 
synthesis and rearrangement of membranes from 
the ER and trans-Golgi. Within the ER, vesi-
cles, CMs and paracrystalline arrays are gener-
ated. DENV uses these membranes to translate, 
r eplicate and p roduce new viral particles. 

Future perspective 
Although the cells have developed different 
mechanisms to detect the presence of viral 
infection, viruses have also developed strat-
egies to be less visible to the defense sensors. 
One of these strategies is to induce synthesis 
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and rearrangement of internal membranes. 
Specifically, DENV uses these membranes to 
translate, replicate and produce new viral par-
ticles. In this compartment within the ER, 
all components required for replication are 
recruited, making the process more efficient. In 
addition, membranes protect RC from RNAases 
and proteases that could interfere with the 
viral replicative cycle. Thus, the intervention 
of viral infection requires the consideration of 
these aspects. 

Given the importance of DENV infection in 
world health, different approaches have been 
developed to block or inhibit viral infection. 

Although different steps in the viral replica-
tive cycle can be interfered with, such as bind-
ing, entry, replication or morphogenesis, and 
viral release, in the last years, many antiviral 
drugs have been designed to interfere with viral 
genome replication. Following this, the need to 
understand this step has gained importance. 
Two important viral components of the RC can 
be considered as important targets for anti viral 
drug design: NS5 and NS3. The presence of the 
RDRP and methyltransferase activities in NS5 
and the importance of both activities for DENV 
replication make NS5 an excellent target to 
interfere with viral infection. In this respect, it is 

Executive summary

Dengue virus epidemiology
n	Dengue virus (DENV) transmission has been vigorously emerging in a growing number of countries during the last two decades.

DENV structure & genomic organization
n	DENV genome is a single-stranded positive-polarity RNA that encodes for three structural and seven nonstructural proteins (NS1, NS2A, 

NS2B, NS3, NS4A, NS4B and NS5).

DENV replication
n	Three main elements are necessary for DENV replication: cis-acting elements, mainly located within or in close proximity to both 5´- and 

3´-untranslated regions (UTR), trans-acting factors, both of cellular and viral origin, and viral-induced membranes, which wrap 
replication complexes and provide compartments for viral morphogenesis.

Cis-acting elements
n	The cis-acting elements required for DENV replication are mainly located at both ends of viral genome in the 5´- and 3´-UTR.
n	The cyclization sequences, as well as the upstream UAG region located within both ends of the viral genome, and maybe the 

downstream AUG region, induce circularization of viral genome.
n	The secondary structure of the stem loop located at the 3´-end (3´-SL), as well as the secondary structure of SL structures within the 

5´-UTR, are required for an efficient negative-strand RNA synthesis.
n	The RNA dependent RNA-polymerase NS5 binds to the 5´-UTR to initiate viral replication.

Trans-acting factors

Viral trans-acting factors:
n	The multifunctional and multidomain proteins NS3 and NS5 are the only proteins with catalytic activities encoded by DENV.
n	NS5 has two main activities: RNA-dependent RNA-polymerase and methyltransferase.
n	NS3 has activities of protease, helicase and nucleoside triphosphatase. The function of NS3 can be regulated by its association with 

other viral proteins.
n	NS1 and the small nonstructural proteins may be required for anchoring of the viral replication complex to membranes of the 

endoplasmic reticulum (ER).

Cellular trans-acting factors:
n	Several cellular proteins, such as EF1a, poly pyrimidine tract binding protein (PTB), La, YB-1, calreticulin, PDI and the heterogenous 

nuclear factors A1, A2/B1 and Q, have been found bound to the 5´- or 3´-UTR of DENV.
n	PTB and La translocate from the nucleus to the cytoplasm during DENV infection and act as positive and negative regulators of 

viral replication.
n	The YB-1 protein may have a role as an antiviral factor or it could be participating in the switching from viral translation to replication.

Replication complex
n	Formation of the replication complex initially requires the proliferation and the formation of invaginations of the ER membranes, 

presumably induced by NS4A and NS3 in conjunction with cellular and other viral proteins.
n	Invaginations have been described as the site for viral replication.
n	The viral RNA is exported to the convoluted membranes, which may represent a storage site for proteins and lipids required for 

DENV replication.
n	The first step in viral morphogenesis is the association between the RNA and the C protein to generate nucleocapsids. The C protein 

accumulates around lipid droplets in the ER.
n	Immature viral particles accumulate in the lumen of dilated ER cisternae and afterward are transported to the cis-Golgi for 

further maturation.
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necesary to further study the methyl transferase 
activity and the importance of cap addition, not 
only in viral translation but also in viral replica-
tion. Conversely, NS3 can also be an excellent 
target for drug design, since the three activities 
present in this protein are indispensable for 
viral replication. 

Other viral proteins, such as NS1 or the 
modulation in cholesterol levels in the host cells, 
may also be targeted to interfere with DENV 
replication. 

Although several aspects in DENV replica-
tion are understood, others need further ana-
lysis. One important aspect to highlight is the 
need for the study of the replication process 
in mammalian and in mosquito cells. It is not 
clear if the same cellular structures that are 
induced in mammalian cells are also present 
in mosquito cells. Furthermore, it needs to be 
established if the cellular proteins that bind 
to the 3 -́ and 5 -́UTR of DENV using mam-
malian cell extracts will be the same when 
mosquito cell extracts are used. Conversely, 
even though genome cyclization occurs in 
the absence of viral and cellular proteins 
in vitro, it is not known whether cellular or 
viral proteins are required in vivo to stabilize 
or induces RNA–RNA contacts. Moreover, it 
is not known if there is a switch that induces 
translation termination and favors replication 
initiation or if viral cyclization is also required 
for the positive-strand RNA synthesis. All these 
aspects need to be solved in order to understand 
the viral replicative cycle in hosts, mosquito and 
mammalian cells.

One important aspect that has to be evaluated 
in the coming years is the role of the presence 
of NS5 within the nucleus of infected cells. It 
is known that NS5 modulates the expression of 
IL-8; however, it is relevant to determine if this 
protein is playing an active role in the regulation 
of the expression of additional genes, as well as 
its role in the relocation of nuclear proteins to 
the cytoplasm during viral infection. 

Finally, the isolation of RC from infected cells 
will allow the more precise determination of the 
role of cholesterol in viral replication, as well as 
the distribution of RC in lipid microdomains. 
This aspect will be important in antiviral drug 
design. Certainly, the understanding of DENV 
replication will be expanded in the coming years 
and, hopefully, provide important clues to reduce 
the burden of this important infection in areas of 
the world suffering epidemics of DENV. 
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