Steven writes:

Dear Vincent et al,

Firstly, congratulations for keeping up such a wide range of thought provoking podcasts, and maintaining such a tremendous output. I find they all leave me with more questions than answers, which is, I think, a sign of good science.

On the latest TWiM, I listened with fascination to Elio’s round up of species able to manage without mitochondria (I wonder: will Wolbachia ever be reduced to the status of organelle?), but then I found myself feeling decidedly uneasy as I listened to the review of the paper on using a phage lysate as a novel antibiotic against bacteria.

Our ‘traditional’ approach to antibiotics (and, indeed, anti-cancer drugs, and pesticides), through simply prospecting for active chemicals in the environment‎, and then using them in a haphazard way–both through the profit motive, and misuse–has, in every case, led to the development of resistance and the danger of a return of morbidity to pathogens long thought ‘tamed’.

Isn’t it time we learnt our lesson?   This new attack on the natural resource offered by phage, clearly shows that we have not. By all means, search for an active phage, but, for all our sakes: don’t go spiking its guns!

I found myself with a sense of deja vu as I recall my concerns when B.t. products began to be used as pesticides, even though the live bacteria had long been used as a proper biological control–no patent fortunes to be made in that, of course.   

Using the natural process, bacteria multiply in the target species and destroy it from within: using bacterial products as sprays that don’t multiply, the pest may or may not absorb a lethal dose, and resistance is much more likely to develop (Applying it via the GM route, pests are still able to sample a leaf, and reject it and go somewhere else: not so if they had swallowed whole bacteria.).‎

No doubt, resistance develops more slowly in insects than with the case of antibiotics and bacteria, but I think that the end result is inevitable: a useful living biocontrol has been rendered ineffective, due to our obsession with finding the active ingredients of everything and using them ‘pure’.  (The same thinking was applied to the food industry when ‘nutrition’ kicked off in the 19C and gave us white bread and sugar, from which we still have not recovered.)

Whilst prospecting for antibiotics has been recently given a second chance through the new methods of cultivating bacteria‎ ‘in the wild’, it seems clear that there is every intention of going on with ‘business as usual’, mass producing every new find, and then cashing in until resistance develops.

Meanwhile, other countries have, apparently, been using the much more logical approach, of letting whole phage target, and destroy, pathogenic bacteria, all along.   Why are the ‘Westernised’ countries not pursuing what would seem to be a much more likely way to  combat bacterial drug resistance than carrying on the way we have been?  [Presumably the drug cos don’t see fortunes in that approach.]

The rather lame ‘excuse’ seems to be that us fussy ‘Westernised’ people would not accept ‘live’ viruses inside us, whereas we don’t mind poisonous chemical drugs. I think that the willingness with which we shovel ‘probiotic’ yogurts, and even consider stool transplants, demonstrates that it would not be so difficult to market phage as the next big natural medicine–And in this case, it really would be medicine!

Undoubtedly, phage therapies will have their own intrinsic problems to overcome–getting around our immune defenses for one–, but the fact of their quite long history of use shows that ways have been found.   So: What right do we, who have squandered all our ‘magic bullets’, have to start stripping down the medicinal phages used by other nations, to their basic components, in order to extract and squander the magic from them too?  

What we witness in the phage lysate paper discussed on TWiM, is the start of an assault on the essential medicinal resources of other nations, that could saddle them with pathogenic bacteria made immune to their natural phages, and, leave them and ourselves powerless to fight disease.   And, in a worst case scenario, we might even upset the entire balance between phage and bacteria that has kept the latter under control for billions of years.

I am, of course, only a lay observer of all this, but it rather strikes me, that playing loose and free with the essential tools and weapons with which phages prevent our world from simply piling up with bacteria, when we know that our own methods always result in resistance‎, is a much more dodgy thing to contemplate, than all those ‘gain of function’ experiments we argue about.   These, indeed, could be called ‘loss of function’ experiments, because, used the way we know they will be used, they, indirectly, could result in the reduction in effectiveness of some of the most vital housekeeping components of our ecosphere.

I hope I’m wrong, but I think history is on my side.

Sincerely,

Steve

Bedfordshire

England.

Ben writes:

Dear Twimers,

I recently discovered your excellent podcast and have been going back through your archives discovering many gems. My favorites so far include the discussion about the Bobtail Squid with Margaret McFall Ngai in TWiM #10, the discussions of Ehux in TWiMs #34 and #37 and the discussion of Centenulid Flatworms in TWiM #21.

I’m an artist and have no scientific training so I listen without expecting to understand everything, but when things get a little too technical I’m always sure that you all will bring the discussion back around to a point that I can readily understand. This is something I really appreciate so thank you for your effects to clearly communicate the intricacies of the fascinating and exciting world of microbial science.

I recently came across this paper that I thought might be of interest

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144270

This is an example of a substance that is generating what seems to be a beneficial alteration of the gut microbiota. I found it particularly interesting that the species involved is Akkermansia muciniphila-one that regulates mucus in the gastrointestinal tract. Given that the mucosal lining of the intestine is an important area for communication between host and microbe I wondered whether the ecology of the intestinal mucosa might be in interesting subject for a future TWiM.

Kind Regards

Ben

Sydney, Australia

Anthony writes:

Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi
http://rspb.royalsocietypublishing.org/content/283/1827/20160106

Leave a Reply

Your email address will not be published. Required fields are marked *

One comment on “TWiM 129 letters